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Abstract. Speaker tracking is the task of finding hypothesized speakers
in a multi-speaker conversation. In this paper, we propose a novel way to
perform online speaker tracking based on neural networks. We designed
an architecture that mimics the probabilistic linear discriminant anal-
ysis (PLDA) algorithm and outputs the most likely regions uttered by
a predefined target speaker. This output can be used for downstream
tasks such as diarization or tracking, as analyzed in this paper. For
sake of generalization, we used two standard public datasets that were
carefully modified to create two-speaker subsets with additional overlap-
ping speech and non-target speakers. Relative improvements of 40% and
20% in minDCF for CALLHOME and DIHARD II single-channel show
promising performance.

Keywords: Speaker tracking, speaker diarization, speaker verification,
x-vector, i-vector.

1 Introduction

Speaker tracking can be considered as the process of identifying all regions ut-
tered by a hypothesized speaker in a multi-speaker recording [1]. Similarly to
speaker diarization, which answers the question "who spoke when?”, speaker
tracking searches for those regions, but assigns speaker identities to them. Find-
ing where a given speaker is intervening in a conversation is an essential pre-
processing step for many multi-speaker applications, where speech data from
previous enrollments may be available, such as virtual assistants, meetings and
broadcast news transcription and indexing [8].

As shown in [6], diarization and tracking are two methods closely related.
Although tracking would benefit from the diarization, in this research, we ex-
plored the possibility of including a neural network as a robust classifier that
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Fig. 1. Pipeline of the proposed speaker tracking system.

can operate similarly to the probabilistic linear discriminant analysis (PLDA),
with the goal of naturally providing results for diarization and tracking.

Since there are just a few studies on speaker tracking [1,8,24], we use diariza-
tion as the main background and inspiration of this work. Most of the standard
speaker diarization systems focus on offline clustering as it uses all the con-
textual information to label the speech regions. Examples of such algorithms
include agglomerative hierarchical clustering (AHC) [10,13], k-means [14,2] and
spectral clustering [11,15]. These clustering methods cannot be used in real-time
applications since they require complete speech data upfront. Latency-sensitive
applications must have speaker labels generated as soon as speech segments
are available to the system. We reviewed diarization approaches that are ef-
fective in an online setup. In [27] an embedding-based speaker diarization sys-
tem is presented, it uses d-vectors [26] with an LSTM-based scoring function
in combination with spectral clustering to successfully perform offline diariza-
tion; however, the diarization error rate almost doubles in its online modality.
Another online diarization approach is introduced in [7], they propose a deep
neural network (DNN) embedding suitable for online processing referred to as
speaker-corrupted embedding. The diarization algorithm uses cosine similarity
to compare the speaker models and the segments embeddings to make the label-
ing decisions. A promising approach for diarization is the use of acoustic features
of a speaker to target the system’s detection to their speech. In [12], an initial
estimation of target’s speaker features (i-vectors) is performed with clustering-
based diarization, providing excellent performance in CHiME-6. Although, this
is an offline approach, it could be extended to an online setup.

In this paper, we propose an online speaker tracking pipeline by replacing the
unsupervised offline clustering module from the standard diarization system with
an online tracking method that uses a DNN as a robust embedding classifier.
The main idea is to mimic the PLDA, scoring the similarity of each hypothesized
speaker at every segment of a recording. As shown in Fig. 1, our speaker tracking
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system shares many of its components with the standard diarization pipeline
(segmentation, embedding extraction, clustering, and resegmentation) [4,30,18],
with the main difference being the removal of the clustering algorithm.

The experimental results on CALLHOME and DIHARD II single-channel [16]
reveal that our method achieves competitive results in comparison to the PLDA
baseline, while improving the verification performance in EER and minDCF3.

2 Methodology

In this section, we introduce our speaker tracking framework; Fig. 1 illustrates
the overall steps of our tracking pipeline.

2.1 Speech Segmentation and Embedding Extraction

The first module in our pipeline is inspired by the standard diarization system.
It uses a Voice Activity Detector (VAD) to determine the speech parts in the
input audio signal, excluding the non-speech regions from subsequent processing.
A sliding window further divides these regions into a set of smaller, overlapping
speech segments, which are the units of audio that can be attributed to a speaker,
establishing the temporal resolution of the speaker tracking results. We decided
to use an oracle VAD as a segmentation mechanism to focus our efforts on
checking whether our proposed architecture can track speakers accurately.

Embedding extraction The next step in the pipeline is to extract an embed-
ding from each segment; such embeddings will be used in two tasks: develop the
hypothesized speaker’s models and label the segments. Our system was tested
following the i-vector- and x-vector-based approaches [17,20]. The i-vector, in-
troduced by Dehak et al. [3], is a speaker representation that provides a way to
reduce large-dimensional input speech data to a small-dimensional feature vector
that retains most of the relevant channel and speaker information. The x-vector,
introduced by Snyder et al. [23,20] is an embedding extracted from a deep neu-
ral network trained to discriminate between speakers, mapping variable-length
speech segments to a fixed-length feature vector. Nowadays, the x-vector ap-
proach provides state-of-the-art performance in many speaker recognition fields,
such as speaker verification and speaker diarization [19,22,28,16].

2.2 Speaker Model Generation

After extracting the segment embeddings, a speaker model is generated for each
hypothesized speaker. In our experimental setup, we compute each speaker model
by averaging its first embeddings from ground truth labels. The number of em-
beddings used in this process depends on a tunable time window that will be

3 Code  available at:  https://github.com/CarlosRCS9,/kaldi/tree/paper-dnn-
tracking/egs/dnn_tracking/v1
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analyzed later in this research. We define the variable model time as the window
width used to generate the speakers’ models.

With this approach, the system operates in an online fashion in which, with
a few labeled samples of the target speakers, it can find their appearances along
the complete audio. In a real-life scenario, we expect to have speech data from
the target speakers from previous enrollments or a method to record a speaker
model, such as a calibration procedure.

2.3 Speaker Segment Identification

The resulting segment embeddings and the speakers’ models are then passed
through a speaker identification/verification stage. The speaker-tracking DNN|,
the key component of our pipeline, performs this task.

According to the run-time latency, the speaker identification module follows
an online tracking strategy. It produces a speaker label immediately after a
segment is available without the knowledge of future segments, making it easier
for the system to deal with large amounts of audio data since the clustering stage
is no longer used.
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Fig. 2. Network input and output layer for the segment identification process.

Features Fig. 2 illustrates the structure of the network’s input and output
layers during the segment labeling process. For a given utterance, the input and
output sequences of the network (X', Y') are defined as follows:

— The speech segmentation and embedding extraction module provides a se-
quence of embeddings X = (21, ,...,27), where each x; € R® has a 1:1
correspondence to the T segments obtained from the input utterance, and b
is the dimension of every embedding.
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— The speaker model generation module provides the sequence M = (mq,ma, ...

where my € R, such that each entry of the sequence is a model of one of
the S tracked speakers.

— The input sequence of our network is defined as the concatenation of M to
each element of X. X' = {z; M|z, € X}.

— The sequence Y = (y1,y2,...,yr) is given by the speaker labels of the T
segments.

— The output sequence is given by Y’/ = {&(y;)|lyy € Y} where &(y;) =
{P(ms|x,yr)|ms € M}. At training time, Y is given by the ground-truth
labels. At inference, Y is computed by the estimated labels.

Architecture Table 1 summarizes the final DNN architecture used in this work.
The first three convolutional layers of the network provide a comparison stream
for each of the S speakers models and the current audio segment. The similarity
measure between the segment embedding and the input speaker models is hence
computed using the contextual information of all the speaker models. Note that
our architecture intends to track up to .S speakers simultaneously. To track less
than S speakers, it is required to add zero-padding in the input layer at the
location where a speaker model would be.

The last fully-connected feed-forward layers use the S comparison streams
to score the similarity of the target speaker model and the incoming segment,
with the last layer having a sigmoid activation function instead of softmax. Such
activation function allows the network to provide zero scores in all of its outputs
when a segment does not belong to any of the tracked speakers, as shown in
Fig. 3.

Table 1. Speaker-tracking DNN architecture.

Layer type  Filters Kernel Input x output

Convld.ReLU  §3 3 b(S+1) x (b—2)S>
Convld.ReLU  S2 3 (b—2)S% x (b—4)8?
Convld.ReLU S 3 (b—4)S%* x (b—6)S
Dense.ReLU (b—6)S x 325
Dense.ReLLU 325 x 165
Dense.Sigmoid 165 x S

Training During training, all possible permutations of the elements of M are
computed and appended to every input x; with two main goals: reduce overfitting
by forcing all output neurons to score the same speaker models, and augment
the number of training samples. This procedure ensures the DNN scoring to
be independent of the speaker model permutation order. Fig. 3 shows how the
training data is furthermore augmented by adding zero-padding as a non-speaker
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model feature. This procedure simulates a verification task during training since
the network has to decide whether the current segment embedding belongs to
one of the available models or not.

At inference time, our system initializes with an array of hypothesized speaker
models (with length less or equal to S). With each recording segment, the sim-
ilarity of each hypothesized speaker is computed. This is done by appending
the models’ array to the segment embedding as the network’s input, with the
output neurons providing similarity scores for each speaker. In an identification
setup, we label the segment with the highest score index. If the task requires
verification, a certainty threshold is used to label the segments.
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Fig. 3. Input layer with zero padding.

2.4 Probabilistic Linear Discriminant Analysis (PLDA)

The baseline system uses probabilistic linear discriminant analysis (PLDA) scor-
ing as the similarity measure®. It has been proven to achieve state-of-the-art per-
formance in many speaker recognition tasks. It provides a powerful distortion-
resistant mechanism to distinguish between different speakers and robustness to
same variability [9,31,16,29].

2.5 DPost-processing

Due to the online nature of our pipeline, the post-processing step is applied as
soon as a speaker label is inferred. This step refines the tracking results by per-
forming two tasks: merging the contiguous segments that share the same label,
and, utilizing a median-filtering-like process to adjust the previously inferred

4 PLDA scoring computes the loglikelihood ratio between two embeddings
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label (x;—1). This process is performed with a window of the last three segments
Wi = (x4—2, 1—1, 2¢), modifying the in-between speaker label if the surrounding
labels are equal to each other, producing three contiguous segments with the
same label.

3 Experiments

This section describes our experimental setup and results. We decided on a 1.0 s
width and 0.5 s step sliding window at the speech segmentation step, discarding
segments shorter than 0.5 s to ensure sufficient speaker information. Both i-
and x-vectors were extracted using the Kaldi’s CALLHOME diarization recipes®
[18]. For CALLHOME x-vector experiments, a publicly available [20,21] model
and PLDA backend were used.

3.1 Evaluation Metrics

The system performance was evaluated in terms of Equal Error Rate (EER) and
minimum Detection Cost Function (minDCF) [25], as the key component of our
tracking framework follows a speaker verification approach. Besides, we report
Diarization Error Rate (DER) [5] since our framework shares characteristics with
the standard diarization system.

3.2 Datasets

We tested our system on two standard public datasets: (1) CALLHOME, it con-
tains 500 utterances distributed across six languages: Arabic, English, German,
Japanese, Mandarin, and Spanish. Each utterance contains up to 7 speakers (2)
DIHARD II single-channel development and evaluation subsets (LDC2019E31,
LDC2019E32), focused on ”hard” speaker diarization, contains 5-10 minute En-
glish utterances selected from 11 conversational domains, each including approx-
imately 2 hours of audio. Since our approach is supervised, we performed a 2-fold
cross-validation on each dataset using standard partitions: callhomel and call-
home?2 from Kaldi’s CALLHOME diarization recipe [18], and DIHARD II single
channel’s development and evaluation subsets. Then, the partitions’ results are
combined to report the averaged DER, EER and minDCF of each dataset.

To evaluate our proposed method in more difficult conditions, we increased
the variability of the datasets in two steps. First, we increased the number of
non-target speakers by adding to each recording speakers models from all the
other recordings as new segments features. Such models were extracted with
the same model time as the target’s speakers. This set is used as the speaker
verification conditions with its 0.17% target probability.

® https://github.com/kaldi-asr/kaldi/tree/master/egs/callhome diarization/vl and
/v2
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The second modification to the datasets aims to give us a better hint of the
system’s performance in a real-life scenario, by increasing the number of overlap-
ping speech instances, as both datasets have a low percentage of speaker overlap
(CALLHOME ~16%, DIHARD II single channel ~9%). To increase the over-
lapping examples, we use the ground-truth labels to extract the non-overlapping
audio segments of each speaker. Then, those segments are merged into a set of
single-speaker utterances for each recording. After that, the single-speaker ut-
terances are pairwise overlapped to create a new set of two-speaker-overlapping
utterances. Finally, the new overlapping utterances are cut into segments (follow-
ing Algorithm 1) and inserted into their original recordings at random locations
with a uniform distribution.

Algorithm 1: Get the lengths to cut from an utterance
Result: A list of lengths to cut from an utterance
T is the length of an utterance;
L is an empty list;
while 7" > 1.5 do
1+ VT;
T+ T-1
append [ to L;

end
append [ to L;

The resulting datataset is used as the speaker overlap condition. It contains
an additional ~18% of speaker overlap in CALLHOME, and ~30% in DIHARD
IT single channel. It is worth mentioning that the speaker verification condition is
a subset of the speaker overlap one, so the target probability increases to 0.35%
with the additional target examples.

3.3 Baseline

We compared the performance of our proposed system with a conventional of-
fline diarization method: PLDA scoring with AHC, following the Kaldi’s CALL-
HOME diarization recipe [18] with oracle number of speakers. The i- and x-vector
PLDA backends were trained for each cross-validation fold with the recipe and
used along all experiments.

Our primary baseline method follows the same procedure as our proposed
system, but replaces the DNN-based identification module with a PLDA. The
PLDA backends are the same as the ones used in the offline diarization baseline.
We report the averaged results across the dataset partitions.

3.4 Results

The first set of experiments follows optimal conditions for speaker tracking: the
input audio signal contains only speech from two tracked-speakers, and there is
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Table 2. DER (%), EER (%) and minDCF (52% target probability) on two datasets
given the optimal conditions.

PLDA DNN
DER EER minDCF DER EER minDCF
CALLHOME i-vector (Offline DER: 16.95)

Model time

3.0s 7.11 19.03 0.39 5.86 4.33 0.08
5.5 s 5.47 16.09 0.33 4.99 3.32 0.06
10.5 s 4.42 14.32 0.29 4.30 2.84 0.05
x-vector (Offline DER: 15.84)

3.0s 9.86 17.63 0.36 11.46 11.45 0.23
5.5s 7.21 14.18 0.29 8.61 8.10 0.16
10.5 s 5.53 11.66 0.24 5.74 4.83 0.10
DIHARD II i-vector (Offline DER: 21.53)

3.0s 18.96 36.62 0.75 18.22 21.95 0.45
5.5 s 16.11 34.73 0.72 13.80 14.80 0.30
10.5 s 13.23 33.70 0.69 11.36 12.45 0.26
x-vector (Offline DER: 21.36)

3.0s 15.80 28.03 0.58 20.20 27.25 0.56
5.5s 11.95 24.86 0.51 18.20 25.75 0.53
10.5 s 10.17 23.66 0.49 12.25 15.75 0.32

no overlapping speech. To have 2-speaker recordings, we applied a mask at the
instances where a third speaker appeared in each recording.

We took this decision based on the fact that if we filtered out entire recordings
with more than two speakers, we would have lost a large percentage of each
dataset (60% CALLHOME and 47% DIHARD II single channel).

Table 2 show the results. All offline diarization results follow the same trend:
x-vectors perform better than i-vectors, with the PLDA-based tracking having
a clear advantage over it’s offline counterpart. The reason behind this behavior
is that the tracking pipeline receives the speakers’ models beforehand.

An interesting phenomenon is that the PLDA-based tracking in CALLHOME
shows better DER performance with i-vectors rather than x-vectors (also hap-
pens in Table 3). We believe that this is related to the generation of speakers
models with embeddings trained with less data (as it does not happen in DI-
HARD II, whose x-vector extractor was trained with VoxCeleb data).

In most cases, the DNN-based tracking outperforms the PLDA baseline in
the verification metrics (EER, minDCF). It is reasonable for several reasons: (1)
The network’s training promoted a binary-like similarity score. (2) Due to the
speaker models permutations performed in training, the network had to perform
more rejections. (3) The similarity score for each speaker is computed with all
speakers’ models available as contextual information.

For DER, the PLDA system has a clear advantage. Still, the DNN pipeline
keeps close results despite its relatively simple architecture; we expect to over-
come this by moving to a recurrent neural network (RNN).
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The most interesting phenomenon in Tables 2 and 3 is that in all DNN re-
sults, the x-vectors have a clear disadvantage against i-vectors in all the provided
metrics. We reviewed and discarded possible procedural and architectural mis-
takes. The same behavior was found in [12] with a similar DNN architecture.
We agree that a possible reason for this behavior is the need for a complex
DNN architecture to score an embedding derived from a much more complex
architecture.

Table 3. DER (%), EER (%) and minDCF (17% target probability) given the speaker
verification conditions.

PLDA DNN
DER EER minDCF DER EER minDCF
CALLHOME i-vector

Model time

5.5s 5.47 22.27 0.80 4.56 7.75 0.28
10.5 s 4.42 22.22 0.83 4.43 5.89 0.21
x-vector

5.5s 7.20 11.09 0.41 8.13 8.74 0.30
10.5 s 5.53 9.50 0.37 6.24  4.40 0.19
DIHARD II i-vector

558 16.11 32.64 0.99 15.42 17.96 0.62
10.5 s 13.23 32.89 0.99 11.44 14.67 0.54
x-vector

5.5 s 11.85 15.59 0.70 16.84 15.89 0.66
10.5 s 10.25 15.17 0.68 13.77 15.06 0.73

Finally, we evaluate our proposed system considering overlapped speech, as
described in Section 3.2. In this set of experiments, the number of tracked speak-
ers is fixed to 2, with the input audio signal containing non-overlapping and
overlapping speech from them in addition to non-target speakers.

In order to select a segment as an overlap of the tracked speakers, it was
necessary to train a DNN model able to work with three speaker models simul-
taneously (S = 3), the first two models representing each of the two speakers,
and the third one, their overlap; as shown in Fig. 4. During test time, an embed-
ding of the tracked speaker’s overlapping speech was used as the third model, so
when the network selected such embedding, we knew it was overlapping speech
from the tracked speakers.

In 4, we report a loss in DER performance as overlapping speech dramatically
increases the complexity of tracking. However, even with an additional model to
score, we keep competitive performance in both EER and minDCF since DNN
keeps its binary-like scoring while selecting overlapping speech.
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Fig. 4. Network input and output layers extended for overlap detection.

Table 4. DER (%), EER (%) and minDCF (35% target probability) for i-vector,
given the speaker overlap conditions.

. CALLHOME DIHARD II
Model time
DER EER minDCF DER EER minDCF
3.0s 20.82 13.20 0.35 37.17 29.46 0.73
5.5s 15.78 9.72 0.26 31.99 24.78 0.64
10.5 s 12.52 7.50 0.20 28.78 21.32 0.55

4 Conclusions

In this paper, we propose a novel embedding-based speaker-tracking DNN model
focused on online tracking. We demonstrated our approach’s efficiency through
several experiments on two standard public datasets: CALLHOME and DI-
HARD II single channel. Results show better performance than the PLDA base-
line in EER and minDCF in different experimental conditions.

For future research, we would like to extend our current DNN model to an
online diarization and tracking system, where a recurrent neural network (RNN)
will be responsible for selecting and updating the speaker models without having
to resort to external sources. We expect such a system to provide not only the
diarization results but also the set of speaker models that it will generate during
an adaptive diarization process.
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